User Tools

Site Tools



The RecommenderEvaluator interface is used to evaluate a specific algorithm. Currently, ranking evaluators include AUC, AveragePrecision, AverageReciprocalHitRank, Diversity, HitRate, IdealDCG, Normalized, Precision, Recall, and REciprocalRank. The evaluators for rating involve MAE, MPE, MSE, RMSE.

If users did not specify the evaluator in the configuration file, evaluation will be applied by using all the corresponding evaluators.

The example to specify an evaluator.


rec.eval.class=mse # if rating



The abbreviation of evaluators.

Evaluator configuration
AUCEvaluator auc
AveragePrecisionEvaluator ap
AverageReciprocalHitRankEvaluator arhr
DiversityEvaluator diversity
HitRateEvaluator hitrate
IdealDCGEvaluator idcg
NormalizedDCGEvaluator ndcg
PrecisionEvaluator precision
RecallEvaluator recall
ReciprocalRankEvaluator rr
MAEEvaluator mae
MPEEvaluator mpe
MSEEvaluator mse
RMSEEvaluator rmse

Specifically, when setting the ranking evaluator for rating algorithms, the results may be generated but meaningless, and cannot be used to compare with other algorithms. Compared with rating algorithms, applying ranking metrics needs to further set rec.recommender.ranking.topn.

When implementing new evaluators, the instance of the new evaluator is an argument of the evaluating method in the Recommender class, which be passed to the object of the Recommender class. Especially, the Recommender object can be different algorithms. And the instance of RecommenderEvaluator can use different evaluators. Users can use multiple evaluators to evaluate the recommendation results. The example code is shown bellow.

RecommenderEvaluator evaluator = new MAEEvaluator();
double evalValue = recommender.evaluate(evaluator);
evaluator.txt · Last modified: 2017/02/16 15:52 by